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Pellet Injection: Motivation & Processes

*  Motivation

— Injection of frozen hydrogen pellets is a viable method of fueling a
tokamak

— Presently there is no satisfactory simulation or _
comprehensive predictive model for ITER ‘
— Ratio of pellet size to device size is ~O(10-3) | &= @ =
« Pellet-plasma interactions: Hﬂ 3 <
— Ablation: Considered well-understood _
— Mass deposition: Large scale MHD driven but not-so-well understood

* Physical Processes

— Non-local electron transport along field lines rapidly heats
the pellet cloud (z).

* Frozen pellet encounters hot plasma and ablates rapidly
» A high B “plasmoid” is created

— lonized plasmoid expands
— Fast magnetosonic time scale z;
— Pellet mass moves across flux surfaces z,,
» So-called “anomalous” transport across flux surfaces
— Pellet cloud expands along field lines t_

» Pellet mass distribution continues m\o:mw field lines until press :
equilibration N

i‘ﬁg\ﬂ lifetime 5 e
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Numerical Challenges & Resolution Requirements

* Time Scalest, <7t <T,<T, <T,
- Spatial scales: Pellet radius r, << Device size L ~O(10~)

*  Presence of magnetic reconnection
— Thickness of resistive layer scales with ~ n'/2
— Time scale for reconnection is ~ 12

« Pellet cloud density ~ O(10%) times ambient plasma density

» Electron heat flux is non-local

« Large pressure and density gradients in the vicinity of cloud

+ Pellet lifetime ~ O(10-3) s 2long time integrations
Resolution estimates

Tokamak Major N Natsns Spacetime
Radius Points
CDXU (Small) 0.3 2% 107 2 x10° 4 x 1012
DIID (Medium) 1.75 3.3%10° T'x10F 2.3 x1QW
ITER (Large) 6.2 1:.5% 1011 9 x 107 1.4 x 1019
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MHD Primer

« A continuum or fluid description of a plasma
— A hierarchy of MHD models can be derived from Fokker-Planck equations
—  Single fluid resistive MHD derived
«  Assuming a “single fluid” and quasi-neutrality
*  High collisionality and small Larmour radius
«  MHD equations are mathematical models describing the flow of a conducting
fluid coupled with electromagnetism
«  Governing equations: hydrodynamics coupled with Maxwell’'s equations
Faraday: 0 B/ot=-V x E (implies V - B=0)
Ohm: E=-vx B +nJ
Ampere: J=V x B
Momentum equations include Jx B force
Energy equation includes J - E (Ohmic heating)

«  Several ways to combine hydrodynamics with Maxwell

—  Weakly coupled, strongly coupled, vector potential formulations efc.

—  Mathematically, the result is a system of coupled nonlinear partial differential
equations which usually must be solved numerically

—  For ideal MHD the equations are hyperbolic PDEs

—  Numerically it is challenging to preserve the solenoidal property of the magnetic
field
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Current Work

» Combine global MHD simulations in a tokamak geometry with
detailed local physics including ablation, ionization and
electron heating in the neighborhood of the pellet

neutral gas shielding highly radiative region
of the plasmoid

* AMR techniques to mitigate the complexity of the multiple
scales in the problem

* Newton-Krylov approach for wide range of temporal scales (not
discussed today)
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Mathematical Model

 Single fluid resistive MHD equations in conservation form

oU 1 ORF  OH 1 oG 1 ORFp OHp 1 OGp
— t o Tttt =9+t5 w5 + 5t 55— + 5D HSpeliet
ot \BR OR 9z R 9o R OR 9z R 8¢
//\ //\
Y Y
Hyperbolic terms Diffusive terms Av
U = {p, pur, pug,puz, Br, By, Bz, e}t Density: Ablation
) , ( , , Energy :Electron heat flux
pUR puz
\Ew‘. +pt — mw_. pupuz — BrByz
pupuy — BrBy puzuy — Bz B,
pupuz — BrBz _ puz +p — B
=3 0 () j uzyBr — upByz
upBz —uzBp 0
upBy —uyBr uz By — :cm 7
(e +pr)up — (Brui)Bp | (e+pr)uz — (Bju) By |
( P f ( 0 )
\E\.w:c - Q:m.vz B2 — pu2 — py
pug +pr — By pupu, — BB,
_ zup — Bz By
G=CW)=4 PUEM=52% L () = -1 0
v :Gm\ﬁ - ::.Mwi . g R A 0 (
uyByz —uz B, 0
0 0
| (e+ pr)uy — (Brug) By | | uyBr—upBy -
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Electron Heat Flux Model

« Semi-analytical Model by Parks et al. (Phys. Plasmas 2000)
— Assumes Maxwellian electrons and neqlects pitch anqgle scattering

OO T
V- ge = 0 guy) + glus)

Too
2 3 T2 & 1
_ 3 — e50 w) = u2 Kqi(uz)/4
Qoo = M. BdooQﬂ HmOOvm Too mﬁ.m% Hom.b .QA v HA v\
T4+ e
Uy = — T = “_u\ n(s)ds
Tises i

» Solve for opacities as a “steady-state” solution to an

advection-reaction equation 97 _, ) . yr — p(a)

— Solve by using an upwind ds
thod a7 | i
metho — +b-Vr =n(z)
» Advection velocity is b &m
PPPL S
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Curvilinear coordinates for shaped plasma

«  Adopt a flux-tube coordinate system
(flux surfaces vy are determined from
a separate equilibrium calculation)
— R=R( n),and Z=Z (& n)
- §=§&(R,Z), and n =n(R,2Z)
— ¢ coordinate is retained as before

« Equations in transformed coordinates

ouJ 1 ORF . 1 ORH g 110G -
o0 R I R Iy Ry

H=JmpF+n.H) = —zF+ReH,

= J(EgF +&,H) = 2, F — R, H,

i—-—?? JG, §=1JS 8 esad _L,_,f
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Numerical method

* Finite volume approach
« Explicit second order or third order TVD Runge-Kutta time stepping

* The hyperbolic fluxes are evaluated using upwinding methods

— Seven-wave Riemann solver: F=F(U,, Ug) = %(F(U) + F(Uy) - 3, o, | A, | r,) where a, =
\» «Cm . CQ

— Harten-Lee-vanLeer (HLL) Method (SIAM Review 1983)
F=F(U, Ug) =2 F(U) * ApaxF(Ur) *+Apin Amax(Ur = Up) A Amax-2in)
 Diffusive fluxes computed using standard second order central
differences
* Imposing the solenoidal condition on B is important

- Initial Conditions: Express B=1/R(¢ x V ¢y + g(y) ¢) = fnc(o).
Initial state is an MHD equilibrium obtained from a Grad-Shafranov
solver.

- Boundary Conditions: Perfectly conducting BCs; periodic in ¢.

-
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Adaptive Mesh Refinement with Chombo

 Chombo is a collection of C++ libraries for implementing
block-structured adaptive mesh refinement (AMR) finite
difference calculations
(http://www.seesar.lbl.gov/ANAG/chombo)
— (Chombo is an AMR developer’s toolkit)

» Adaptivity in both space and time

* Mesh generation: necessary to ensure volume preservation
and areas of faces upon refinement

* Flux-refluxing step at end of
time step ensures conservation

ﬁ g TR s
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Pellet Injection: Zoom into Pellet Region
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Pellet Injection: Pellet in Finest Mesh

"

PPPL W e

PRINCETON PLASMIA l/
PHVSILS LABORATORY s &




HilSH1d HoL3luiud

1ddd©

AHOLHHOBHT S1ISAHd

Gl

BYT AR N3 XuMIB8
55353333

uonoaluj 1a||ed

AjisuaQ pno|) 19|18d



Results - HFS vs. LFS

LFS Pellet Injection
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Results - HFS vs. LFS

LFS Pellet Injection
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Results - HFS vs. LFS

B;=0.375T
ny=1.5x 10'%/m3
To..=1.3Kev
$=0.05

Ry,=1m, a=0.3 m

Pellet: r =1mm,
v,=1000m/s
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Results - HFS vs. LFS

LFS Pellet Injection
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HFS vs. LFS - Average Density Profiles

HFS Pellet Injection LFS Pellet Injection

y-averaged p

Edge

HFS Pellet injection shows better core fueling than LFS

Arrows indicate average pellet location

Most likely explanation: Nonlinear manifestation of an MHD interchange Smﬂmc\.\ﬁ\.
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Pellet Injection: LFS/HFS Launch
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AMR Programming Model

(0.0)

(1.1)

[(3,2) (5.0)

2.0)

4.0)

« Domain aecomposition that assigns rectangular patches to processors. All
processors have access to processor assignment metadata. Distributed grid
data built on top of these metadata.

* Local computation: iterate over patches owned by processor. Processor has
access only to local data.

« Communication primitives: exchange of ghost cell data, copying from a
disjoint union of rectangles to some other union of rectangles.

« Interlevel operations: interpolating boundary data, averaging / interpolation
between levels combine communication and irregular computation. ,
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Defining Scalability, Performance

« Operator peak performance: maximum performance for evaluating
an operator on a uniform grid on a single processor. For stencil
operations, this has been typically 10%-20% of the nominal peak.
We assess performance in terms of a fraction of operator peak
performance.

» Adaptivity factor: ratio of the time to perform the calculation on a
uniform grid at the finest resolution to the time to solution for the
AMR calculation. The former is generally estimated from smaller
runs and assuming perfect weak scaling, rather than computed
directly.

« Implementation efficiency: what fraction of time is spent on regular
computation (e.g. in Fortran77 or other optimized single-patch
operations). For the examples described here, implementation
efficiency is very close to the fraction of operator peak
performance.

-
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AMR Gas Dynamics Benchmark

*  Unsplit PPM solver - 6K flops / grid point to update a

cell. Explicit method, so ghost cell values copied /
interpolated only once per update. Easiest case.

« Single image is a spherical shock tube in 3D, with
finest grids covering a spherical shell. Two levels of
refinement, factor of 4 each. Refinement in time
proportional refinement in space. Fixed-sized
(16x16x16) patches. Five unknowns / cell, 62M grid
points, with1B grid point updates performed per
coarse time step.

* Operator peak performance on XT4 is 530 Mflops /
processor.

« Timing only the update step - no initialization,
regridding, etc.

* Results obtained with hyperbolic code “out of the
box” from Chombo distribution.

*  96% efficient scaled speedup over range of 128-
8192 processors (173-181 seconds).

«  Fraction of operator peak: 85% (450 Mflops /
processor).

»  Adaptivity factor: 16.
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Cray XT4

AMR Gas Dynamics Benchmark Weak Scaling
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Scaling of AMR for explicit
methods is relatively easy.

Slide: Courtesy P. Colella, APDEC, LBNL
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;‘—__J\ factor: 48 (estimated).
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Multilevel discretization of Laplacian, with AMR
multigrid algorithm used as solver. 10 iterations
of AMR-MG V-cycle = 1700 Flops / grid point.
Over 100 calls to communication (exchange /
copyTo) per iteration. Typical of broad range of
elliptic solvers on AMR grids.

Single image is two rings. Two levels of
refinement, factor of 4 each. Patch size is
allowed to vary between 83 and 32”*3. One
unknown per cell, total of 15M grid points per
image.

Operator peak performance on XT4 is 840
Mflops / processor.

Timing only the solver - no initialization.

Results obtained after significant effort in code
optimization (2 months), leading to 10X

AMR Poisson Benchmark

AMRPoisson Benchmark Weak Scaling

Cray XT4

T 1 T 1 I T 1 _ T T I T I T T 1

1.4+ |#&—A Regula -
®® Solve
Perfect
1.2 | e (Solve)-(Bottom Solve) —
B8 Bottom Solve e
i
e ——8— e
208 | —
g7 480 million 15 billion
=~
0.6 il
A A A A& — A A
041 —
0.2 il
1 1 1 1 1 1 1

0.0
1000

Concurrency

10000

improvement in per-processor performance ang
in scalability.

87% efficient scaled speedup over range of 256

Development of scalable Poisson solvers is
-one of the most challenging goals for AMR.

8192 processors (8.4-9.5 seconds).

Fraction of operator peak: 45% (375 Mflops /
processor).
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Conclusion

* Developed a finite volume upwind adaptive curvilinear
mesh MHD code for pellet injection including kinetic-
based model for electron heat flux

» Simulations show better core fueling for HFS injection
than LFS, in qualitatively agreement with experiments
— Adaptivity factor estimated for these simulations ~ 100-200

* Future Work

PPPL
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Implicit treatment (explicit too slow)

solvers which can handle large anisotropies, large variations
in plasma properties, curvilinear meshes

Optimize to 1000s of processors (translating the success of
benchmark suites to the pellet code)

Validation against experiment
Visualization & data analysis (analytics)
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